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Receptivity in three-dimensional boundary-layer flow to localized surface roughness
and free-stream vorticity is studied. A boundary layer of Falkner–Skan–Cooke type
with favourable pressure gradient is considered to model the flow slightly downstream
of a swept-wing leading edge. In this region, stationary and travelling crossflow
instability dominates over other instability types. Three scenarios are investigated: the
presence of low-amplitude chordwise localized, spanwise periodic roughness elements
on the plate, the impingement of a weak vortical free-stream mode on the boundary
layer and the combination of both disturbance sources. Three receptivity mechanisms
are identified: steady receptivity to roughness, unsteady receptivity to free-stream
vorticity and unsteady receptivity to vortical modes scattered at the roughness. Both
roughness and vortical modes provide efficient direct receptivity mechanisms for
stationary and travelling crossflow instabilities. We find that stationary crossflow
modes dominate for free-stream turbulence below a level of about 0.5 %, whereas
higher turbulence levels will promote the unsteady receptivity mechanism. Under the
assumption of small amplitudes of the roughness and the free-stream disturbance, the
unsteady receptivity process due to scattering of free-stream vorticity at the roughness
has been found to give small initial disturbance amplitudes in comparison to the
direct mechanism for free-stream modes. However, in many environments free-stream
vorticity and roughness may excite interacting unstable stationary and travelling
crossflow waves. This nonlinear process may rapidly lead to large disturbance
amplitudes and promote transition to turbulence.

1. Introduction
The classical transition path to turbulence in laminar boundary-layer flow is

characterized initially by the receptivity phase, i.e. the conversion of external
perturbations into boundary-layer disturbances, subsequently by linear and nonlinear
growth of the disturbances and finally by the breakdown to turbulence via secondary
instability. Despite the fact that the linear amplification of the unstable waves can now
be accurately estimated, reliable values for the initial condition of these perturbations
must be provided. Commonly used industrial transition-prediction tools, e.g. the eN -
method, exclude the receptivity phase. In order to overcome the need to ‘guess’ the
initial disturbance conditions, receptivity has previously been studied analytically,
experimentally and numerically.
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1.1. Receptivity of Blasius flow

The foundation of receptivity studies had already been laid in the 1980s by Goldstein
(1983, 1985) and Ruban (1985), who employed asymptotic analysis to investigate
receptivity at the first neutral point of Tollmien–Schlichting (TS) instability in Blasius
flow. They pointed out that resonance regarding frequency and wave vector between
the external disturbances and the unstable eigenmode of the base flow is necessary to
trigger boundary-layer instability. The excitation of TS waves, for instance, requires
unsteady external perturbations, e.g. acoustic or vortical free-stream disturbances.
However, free-stream perturbations feature in general larger chordwise wavelengths
than the discrete eigenmodes of the mean flow. Hence, scale reduction is necessary
to trigger TS instability by free-stream disturbances. Goldstein (1985) shows that
scale conversion requires a short-scale downstream variation of the base flow. This
requirement is fulfilled in two regions: just downstream of the leading edge where the
boundary layer grows rapidly, and in the vicinity of a localized surface non-uniformity.
Thus, two different receptivity mechanisms to unsteady free-stream perturbations
are imaginable: (i) a direct process in the leading-edge region, associated with the
unsteady free-stream disturbance, and (ii) a mechanism associated with the interaction
between unsteady free-stream perturbations and the steady disturbance induced by
localized surface non-uniformity. For acoustic free-stream perturbations only the
second receptivity mechanism proved to be efficient.

1.2. Receptivity of three-dimensional boundary layers

Three-dimensional boundary layers can be found on swept wings or blades and
are therefore of importance in aeronautics and turbomachinery. In particular, the
flow over a swept flat plate subject to a chordwise pressure gradient has often been
considered in the literature. This is a prototype for swept wings, being referred to as
a Falkner–Skan–Cooke boundary layer. Most studies focus on crossflow instability
waves, since they dominate the perturbation scenario inside the boundary layer, given
a large sweep angle. In contrast to TS instability, crossflow instability is of the inviscid
type and can be stationary as well as travelling.

Results on receptivity and stability in three-dimensional boundary-layer flow have
been reviewed by Saric, Reed & White (2003). In the 1990s, the finite reynolds-number
theory (FRNT), originally developed by Zavol’skii, Reutov & Ryboushkina (1983)
for two-dimensional boundary layers, has been addressed by e.g. Crouch (1993),
Choudhari (1994) and Ng & Crouch (1999). In contrast to asymptotic analysis,
FRNT is valid for moderate Reynolds numbers and can be applied upstream and
downstream of the first neutral point of the instability. It is based on perturbation
equations of Orr–Sommerfeld/Squire type and incorporates in its usual formulation
the parallel-flow assumption. External disturbances are included in finite Reynolds-
number theory as non-homogeneous boundary conditions, e.g. for wall roughness, or
as an additional forcing term, e.g. for acoustic free-stream waves. Finite Reynolds-
number theory further assumes that the excited boundary-layer disturbances are
convective in nature. The work by Crouch (1993) and Choudhari (1994) deals with
Falkner–Skan–Cooke boundary-layer flow exposed to both surface non-uniformities
and acoustic free-stream perturbations. These authors consider linear receptivity to
localized small-amplitude roughness elements, exciting steady crossflow instability, and
an unsteady receptivity mechanism due to a weak planar acoustic free-stream wave
scattered at the roughness, generating travelling crossflow modes. They characterize
the receptivity process by an efficiency coefficient, which relates the initial amplitude of
the instability mode to that of the triggering perturbations. Although Crouch (1993)
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and Choudhari (1994) found higher efficiency for the unsteady receptivity mechanism,
the steady receptivity process to roughness gave larger initial disturbance amplitudes.
This is due to the interaction of two small-amplitude disturbances in the case of
unsteady receptivity. They concluded therefore that stationary crossflow vortices are
more likely to dominate transition in swept-wing flow under flight conditions than
travelling crossflow instability.

Ng & Crouch (1999) and Collis & Lele (1999) consider receptivity to localized
roughness of flow over a swept parabolic cylinder. While the former authors use this
configuration as base flow for a FRNT study, Collis & Lele (1999) perform both
non-parallel FRNT calculations and direct numerical simulations based on linearized
perturbation equations. Spatial evolution of the boundary layer and surface curvature
are included in their work. They found that non-parallel effects attenuate steady
receptivity, while convex curvature enhances it. As in Crouch (1993) and Choudhari
(1994), the most efficient receptivity sites were found slightly upstream of the first
neutral point of the triggered stationary instability. Also Bertolotti (2000) studied
the effect of non-parallel mean flow on receptivity to localized roughness for swept-
wing flow. He emphasizes that non-parallel effects are substantial especially in the
leading-edge vicinity. This is, on the one hand, due to rapid boundary-layer growth,
on the other hand to highly curved streamlines in this region. Bertolotti performs his
analysis in Fourier space, expanding to first order the base flow and the disturbance
in the streamwise coordinate about the roughness location. The receptivity amplitude
is then expressed as the sum of a zeroth- and a first-order contribution, and two
separate efficiency coefficients are introduced. While the zeroth-order part resembles
the formulation for the receptivity amplitude in finite Reynolds-number theory, the
first-order contribution also involves the derivative of the Fourier amplitude of the
roughness with respect to the instability wavenumber. Bertolotti (2000) found that
non-parallel effects attenuate roughness receptivity, as well.

1.3. Receptivity to vortical free-stream disturbances

The numerical studies mentioned above are limited to acoustic free-stream
disturbances. In turbomachinery, for instance, vortical perturbations in the free
stream are often more relevant. Experimental work has been done on receptivity
and transition of three-dimensional boundary layers subject to vortical free-stream
disturbances, for instance by Bippes & Deyhle (1992) and Reibert et al. (1996). Also
these studies revealed that steady crossflow disturbances dominate the boundary-layer
response at the typically low turbulence levels under flight conditions. However, this
may not be the case in noisy environments and for wind-tunnel tests, see Saric et al.
(2003).

Although receptivity of three-dimensional boundary-layer flow to free-stream
vortices has not been much studied, many publications on numerical and
experimental studies of two-dimensional boundary layers subject to vortical free-
stream disturbances are available; see for example Bertolotti & Kendall (1997),
Kendall (1998), Jacobs & Durbin (1998, 2001), Brandt, Schlatter & Henningson
(2004), Fransson, Matsubara & Alfredsson (2005) and the review by Saric, Reed
& Kerschen (2002). Buter & Reed (1994) consider two-dimensional flow past a flat
plate with an elliptic leading edge, exposed to time-periodic spanwise free-stream
vortices. They found a receptivity mechanism for TS instability, which is, however,
weaker than acoustic receptivity studied by Lin, Reed & Saric (1992) for the same
configuration. The receptivity process becomes completely different, when the free-
stream perturbations contain also streamwise vorticity. Then, the key structures
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prior to transition are no longer TS waves, but streamwise streaks of alternating
high- and low-momentum fluid. The formation of the streaky pattern is due to the
interaction between non-normal eigenmodes of the base flow. Bertolotti (1997) found
for Blasius flow that maximum receptivity is obtained for free-stream vortices with
zero streamwise wavenumber. He suggests a linear receptivity mechanism, by which
the free-stream vortices diffuse into the boundary layer close to the leading edge
and cause the formation of the streaks inside it. This process has been confirmed by
Bertolotti & Kendall (1997) in an experiment with controlled free-stream conditions
through the generation of a weak axial vortex by a micro wing upstream of a flat plate
with elliptic leading edge. Although its core was located outside the boundary layer,
the streamwise vortex was able to produce a rather strong perturbation inside it. The
work also includes results from a numerical model of this flow configuration, and good
agreement between the measured and the numerically determined amplitude function
of the boundary-layer perturbation has been found. Berlin & Henningson (1999)
consider both streamwise modes and a pair of oblique waves in the free stream.
Apart from the linear receptivity mechanism, being efficient only for streamwise
free-stream vorticity, they also found a nonlinear receptivity mechanism due to the
interaction of two streamwise or two oblique free-stream vortices. Jacobs & Durbin
(1998) suggest an alternative model for vortical free-stream disturbances in Blasius
flow, based on the concept of the continuous spectrum of the Orr–Sommerfeld/Squire
operator. They show that penetration of the vortical mode into the boundary layer
is crucial for receptivity and that deepest penetration is obtained for low-frequency
free-stream vorticity at low Reynolds numbers. The model of Jacobs & Durbin
(1998) is used by Brandt, Henningson & Ponziani (2002) and compared with the
oblique-mode model of Berlin & Henningson (1999). These authors found similar
nonlinear receptivity mechanisms for both types of free-stream disturbance. To obtain
a more realistic model for turbulence in the outer flow, Jacobs & Durbin (2001) and
Brandt et al. (2004) consider the superposition of a large number of modes from the
continuous Orr–Sommerfeld/Squire spectrum, weighted to obtain a typical energy-
density spectrum of isotropic turbulence. For free-stream turbulence dominated by
low frequencies, the linear receptivity mechanism was found to be the main cause
of streak generation, whereas receptivity to high-frequency free-stream turbulence is
characterized by the nonlinear mechanism. Zaki & Durbin (2005) show that bypass
transition can be observed in numerical simulations, if only two vortical free-stream
modes are prescribed at the inflow: one of low and one of high frequency. Whereas the
low-frequency mode is responsible for the generation of streaks, the high-frequency
mode triggers secondary instability upon the streaky flow.

The influence of streamwise pressure gradient on receptivity and transition in the
presence of free-stream vorticity was investigated in Zaki & Durbin (2006) by direct
numerical simulation of two-dimensional boundary-layer flow subject to a Falkner–
Skan pressure distribution. That work also includes a study of the interaction between
the continuous-spectrum modes and the boundary layer in Falkner–Skan flow, as has
been presented by Maslowe & Spiteri (2001). Zaki & Durbin (2006) found that the
free-stream modes penetrate less under adverse and more under favourable pressure
gradient into the boundary layer than in Blasius flow; nonetheless, transition onset
and completion are moved upstream for the former, and downstream for the latter,
pressure distribution. The authors conclude that deep penetration of the free-stream
modes is not crucial for the receptivity process in two-dimensional boundary layers.

Receptivity mechanisms in three-dimensional swept-plate flow, however, are much
less studied than in Blasius flow, as stated by Saric et al. (2003). Results from
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direct numerical simulations (DNS) with a spectral method are herein presented to
characterize the receptivity of three-dimensional boundary layers. A spatial approach
is employed, capturing non-parallel effects on receptivity owing to the streamwise
evolution of the mean flow. The focus lies on crossflow vortices, as well. Two
perturbations are considered: localized roughness elements at the wall and vortical
disturbances in the free stream. Three receptivity mechanisms are investigated: steady
receptivity to roughness, unsteady receptivity to free-stream vorticity and unsteady
receptivity due to scattering of a vortical mode at a localized roughness element.
The first two mechanisms depend on the amplitude of the roughness element and the
free-stream-mode, respectively, while the third receptivity process involves the product
of two disturbance amplitudes. The three mechanisms are characterized in terms of a
receptivity coefficient as a measure for their efficiency.

The paper is organized in the following fashion. Section 2 discusses the base flow
(2.1), the numerical method (2.2) and the modelling of the surface-roughness element
and the vortical free-stream disturbance (2.3). Section 3 focuses on steady receptivity
to localized surface roughness, and § 4 deals with direct unsteady receptivity to a
vortical free-stream mode. The advection of single vortical modes along a plate with
localized roughness defines the third receptivity process being investigated in § 5. In
§ 6, the efficiency of the receptivity processes for stationary and travelling crossflow
instability is compared. The results are discussed and summarized in § 7.

2. Flow configuration and numerical approach
2.1. Base flow

The flow over a swept flat plate subject to a chordwise pressure gradient is considered,
a frequently studied prototype for swept wings. The base flow is obtained through
the solution of the three-dimensional time-dependent incompressible Navier–Stokes
equations, initialized with the Falkner–Skan–Cooke similarity profiles. This type of
flow includes most of the features of the flow over the wing – the chordwise pressure
drop, the streamline curvature and the crossflow, but not the surface curvature.
The pressure gradient and the curvature of the external streamlines are included in
Falkner–Skan–Cooke flow by assuming the following free-stream velocity distribution,

U∞(x) ≡ U ∗
∞(x∗)

U ∗
∞(x∗

0 )
=

(
x∗ + x∗

0

x∗
0

)m

, (2.1a)

W∞ ≡ W ∗
∞

U ∗
∞(x∗

0 )
= tan φ0 = const, (2.1b)

where U and W are used for the chord- and spanwise mean velocity and starred
quantities have physical dimensions. The exponent m denotes the flow acceleration,
related to the frequently used Hartree parameter βH via

m =
βH

2 − βH

. (2.2)

The angle φ0 is the sweep angle at the reference station x∗
0 . Owing to the chordwise

flow acceleration, the free-stream velocity vector is turned more and more into the
x∗-direction downstream, forming a curved streamline. The external streamline is
sketched in figure 1, where the Falkner–Skan–Cooke base-flow profiles are shown
with the coordinate system adopted. In this figure, the mean flow is decomposed
along the free-stream direction at x∗

0 rather than along the chord- and spanwise
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Figure 1. Wall-normal profiles of the streamwise and the crossflow velocity for
Falkner–Skan–Cooke boundary-layer flow.

coordinates x∗ and z∗. This decomposition shows a non-zero velocity in the cross-
stream direction inside the boundary layer – the crossflow, resulting from a force
imbalance between the pressure and the centrifugal forces. The crossflow profile
exhibits an inflection point and supports inviscid instability, referred to as crossflow
instability. Note that instability waves propagating in the direction of the crossflow
have negative spanwise wavenumber β and positive chordwise wavenumber α in the
chosen coordinate system.

The Falkner–Skan–Cooke boundary-layer flow is independent of the spanwise
direction z∗, and is governed by the two-dimensional boundary-layer equations, see
for instance Schlichting (1979). For the free-stream velocity distribution in (2.1), the
boundary-layer equations for the chordwise and wall-normal mean velocities U ∗ and
V ∗ can be re-arranged in a single equation by introducing the streamfunction f (η),
whereas the chordwise and the normal coordinate x∗ and y∗ can be replaced by one
single similarity variable η,

η =

√
m + 1

2

U ∗
∞(x∗)

ν∗x∗ y∗. (2.3)

If the spanwise velocity W ∗ is expressed as W ∗ = W ∗
∞g(η), the boundary-layer

equations can be transformed into a set of ordinary differential equations for f (η)
and g(η),

f ′′′ + ff ′′ + βH (1 − f ′2) = 0, (2.4a)

g′′ + fg′ = 0, (2.4b)

with boundary conditions

η = 0: f = f ′ = g = 0, (2.5a)

η → ∞: f → 1, g → 1. (2.5b)

Self-similar profiles for the chordwise and the spanwise velocity U ∗ and W ∗ are
obtained from f ′(η) and g(η). They are referred to as the Falkner–Skan–Cooke
similarity profiles in literature. Further details can be found in Schmid & Henningson
(2001) or Högberg & Henningson (1998).

Throughout the remainder of this paper, non-dimensional variables are used.
Lengths are made dimensionless by the chordwise boundary-layer displacement
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Figure 2. Reynolds number (—–) and external streamline angle (---) as a function of the
chordwise coordinate.

thickness δ∗
0 ≡ δ∗(x∗

0 ) at the reference location x∗
0 and velocities by the chordwise

free-stream velocity U ∗
∞,0 ≡ U ∗

∞(x∗
0 ). The dimensionless reference station x0 is located

downstream of the leading edge of the plate and corresponds to the inflow plane of
the computational domain. The reference length δ∗

0 and the reference velocity U ∗
∞,0

define the Reynolds number at the computational inlet,

Reδ∗
0
=

U ∗
∞,0δ

∗
0

ν∗ , (2.6)

where ν∗ is the kinematic viscosity. The local Reynolds number Reδ∗ is defined by
replacing δ∗

0 and U ∗
∞,0 in (2.6) by their local values δ∗(x) and U ∗

∞(x). Figure 2 shows
the relation between the local Reynolds number Reδ∗ and the chordwise coordinate
x (solid line). Also the local angle φ of the external streamline is displayed versus x

(dashed line).
The inflow Reynolds number is Reδ∗

0
= 220 for most of the present results,

corresponding to an inflow station at x0 = 167δ∗
0 downstream of the leading edge. The

parameters m and φ0 in (2.1) are chosen in order to obtain conditions similar to those
of the airfoil experiments at Arizona State University by Reibert et al. (1996). These
authors report among other results the N-factor of the steady crossflow instability
wave with 12 mm spanwise wavelength at different chordwise stations. The local N-
factor measured on the swept airfoil at 10 % chord is approximately obtained at the
corresponding station on the swept flat plate, if m = 0.2, or βH = 0.333, is selected. In
addition, this value gives a chordwise free-stream velocity distribution, which matches
sufficiently well the cp distribution reported by Reibert et al. (1996). The sweep angle
at x∗

0 is set to φ0 = 45◦, as in the experiment. The crossflow component is most
pronounced at this angle, and the crossflow instability waves dominate over other
types of instability. Also note that the streamwise and spanwise free-stream velocity
are equal at the reference location for φ0 = 45◦, i.e. U∞(x0) = W∞(x0) = 1.

2.2. Numerical method

The present results are obtained by means of a simulation code based on spectral
methods to solve the three-dimensional time-dependent incompressible Navier–Stokes
equations, see Chevalier et al. (2007). The algorithm builds on a Fourier representation
along the chord- and spanwise coordinates x and z and on Chebyshev polynomials
in the wall-normal direction y, together with a pseudo-spectral treatment of the
nonlinear terms. The time integration is based on a four-step third-order Runge–
Kutta method for the nonlinear terms and a second-order Crank–Nicolson scheme
for the linear terms. Aliasing errors from the computation of the nonlinear terms are
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removed in wall-parallel planes by the 3/2-rule, whereas a grid refinement normal to
the plate has turned out to be more convenient than dealiasing.

The swept-plate boundary layer develops along the chordwise direction, while
the streamlines continuously change direction. For the simulation of such spatially
evolving flows, the required chordwise periodicity is established by the implementation
of a ‘fringe region’ at the downstream end of the computational domain, as described
by Nordström, Nordin & Henningson (1999). In this region the velocity field U is
forced to the desired velocity profiles U0 by an additional term in the Navier–Stokes
equations. Here, U is used for the instantaneous velocity field to distinguish it from the
base flow U . U0 indicates the desired inflow, i.e. the Falkner–Skan–Cooke similarity
profiles, and may also contain incoming disturbances. The equation solved is,

∂U
∂t

= NS(U) + λ(x)(U0 − U), (2.7)

where NS denotes the right-hand side of the momentum equations, and λ(x) is a
smooth forcing function, being non-zero only in the fringe region.

Along the plate, no-slip conditions apply for the basic and the perturbed flow
in the case of vortical free-stream perturbation, while non-homogeneous boundary
conditions are employed to model the surface roughness, see § 2.3. At the free-stream
boundary, a von Neumann condition is used for the computations with free-stream
vortical modes, and the computational domain is chosen high enough to ensure
independence of the boundary-layer response from the location of, and the conditions
at, the top boundary. To compute the base flow and the disturbed flow in the case
of surface roughness, the asymptotic condition proposed by Malik, Zang & Hussaini
(1985) is employed,

y = y∞:
∂ û
∂y

+
√

α2 + β2û =
∂Û
∂y

+
√

α2 + β2Û . (2.8)

This condition is equivalent to the requirement of zero vorticity at the free-stream
boundary y∞, allowing us to place it nearer the boundary layer, and it is applied in
Fourier space, as indicated by the hat. U stands for the mean flow, u for the disturbance
velocity and α and β for the chord- and spanwise wavenumber, respectively. As the
mean flow is independent of, and the perturbed flow periodic in, the spanwise direction
z, cyclic boundary conditions are applied along z.

The simulation code provides the possibility of solving the nonlinear and the
linearized perturbation equations about any three-dimensional base flow. Herein,
the linearized perturbation equations are solved for the studies of direct receptivity
to roughness and free-stream vortices presented in the § § 3 and 4 and the nonlinear
equations for the unsteady receptivity problem to free-stream vorticity in combination
with roughness described in § 5.

2.3. Disturbance generation

In the present paper, the receptivity of the three-dimensional swept-plate boundary
layer is studied for two different types of external disturbances – steady roughness
elements on the plate surface and unsteady vortical disturbance in the free stream.
This section reports how these two types of disturbance are modelled and implemented
in the simulation code.



Receptivity of boundary layers 217

2.3.1. Surface roughness

A chordwise localized, spanwise periodic roughness element,

h(x, z) = εh hx(x) sin(βRz), (2.9)

is placed downstream of the inflow plane x0. εh is a small parameter describing
the maximum amplitude of the roughness bump, and βR = 2π/Lz is the spanwise
wavenumber of the roughness bump. The spanwise length scale of the roughness
element and the spanwise width Lz of the computational domain are hence identical.
Roughness elements of different spanwise scales will be considered separately, owing
to the assumption of linear flow behaviour and the spanwise homogeneity of the base
flow. The chordwise shape hx(x) is

hx(x) =

[
S

(
x − hstart

hrise

)
− S

(
x − hend

hfall

+ 1

)]
, (2.10)

where S is a smooth step function,

S(ξ ) =

⎧⎪⎨
⎪⎩

0, ξ � 0,

1/
(
1 + e(1/(ξ−1)+1/ξ )

)
, 0 < ξ < 1,

1 ξ � 1.

(2.11)

The parameters hstart , hend , hrise and hfall in (2.10) indicate the start and end station of
the bump, i.e. hx(x) 	= 0 on [hstart , hend ], and the extension of the rising and the falling
flank of the smooth step. The roughness element is not meshed, but modelled by
non-homogeneous boundary conditions along the plate. The no-slip conditions along
the bump contour h(x, z) are projected from the bump surface to the undisturbed
wall y = 0 via a Taylor series expansion,

⎛
⎜⎝

u

v

w

⎞
⎟⎠

0

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

−h(x, z) ∂U
∂y

0

−h(x, z) ∂W
∂y

⎞
⎟⎠

0

, hstart � x � hend ,

0, elsewhere,

(2.12)

where u, v and w are the components of the disturbance velocity. Since the roughness
height εh is assumed to be small, the Taylor series is truncated at first order. The
parameters used in (2.9) and (2.10) are specified when presenting the results in 3,
where the model for roughness receptivity will be motivated in the context of previous
studies reported in literature.

2.3.2. Free-stream and boundary-layer modes

The unsteady free-stream disturbance is modelled by adding a single vortical mode
to the base flow in the fringe region. To analyse the effect of single waves of specific
wavenumbers and frequencies, Fourier modes would be a natural choice. However,
in the presence of the plate, the vortical mode has to decay smoothly to zero towards
the wall. Eigenfunctions associated with the continuous wavenumber spectrum
of the Orr–Sommerfeld/Squire operator for three-dimensional boundary-layer flows
are therefore used to represent the free-stream modes, as for example in Jacobs &
Durbin (1998) and Brandt et al. (2004). These continuous-spectrum eigenfunctions
are sometimes also denoted continuous modes, while the eigenfunctions from the
discrete wavenumber spectrum of the Orr–Sommerfeld/Squire operator are called
discrete modes.
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Grosch & Salwen (1978) first introduced the concept of the continuous spectrum for
the Orr–Sommerfeld/Squire operator by relaxing the free-stream boundary conditions
at y → ∞. The derivation is outlined here since it is presented for the first time for
three-dimensional boundary layers. In the limit y → ∞, the Orr–Sommerfeld/Squire
system simplifies to a set of two decoupled homogeneous ordinary differential
equations with constant coefficients,

(D2 − α2 − β2)2ṽ − iReδ∗(αU∞ + βW∞ − ω) (D2 − α2 − β2)ṽ = 0, (2.13a)

(D2 − α2 − β2)η̃ − iReδ∗(αU∞ + βW∞ − ω) η̃ = 0. (2.13b)

ṽ and η̃ are the amplitude functions in spectral space for the normal velocity v and
vorticity η of the continuous Orr–Sommerfeld/Squire eigenmodes, α is the chordwise
wavenumber and D = d/dy. Defining

γ 2 ≡ −iReδ∗(αU∞ + βW∞ − ω) − α2 − β2, (2.14)

(2.13) can be re-written as

(D2 − α2 − β2)(D2 + γ 2)ṽ = 0, (2.15a)

(D2 + γ 2)η̃ = 0. (2.15b)

Further, (2.14) can be re-ordered to obtain a quadratic equation in α with solution

α =
1

2
i[

√
(Reδ∗U∞)2 + 4(iReδ∗(βW∞ − ω) + β2 + γ 2) − Reδ∗U∞], (2.16)

which is the dispersion relation for the continuous Orr–Sommerfeld/Squire
eigenmodes. The term (D2 + γ 2) in (2.15) suggests the interpretation of γ as a
wall-normal wavenumber. The solution to (2.15) is,

ṽ = Ae−iγy + Beiγy + Ce−
√

α2+β2y + De
√

α2+β2y, (2.17a)

η̃ = Ee−iγy + F eiγy. (2.17b)

The constants A to F result from the boundary conditions on the plate and in
the outer flow. To avoid a non-physical ‘exploding’ solution as y → ∞, the fourth
fundamental solution for ṽ should be dropped. In practice, to compute the free-stream
modes, the upper boundary is located a sufficiently large wall-normal distance y∞
away from the plate. There, we may impose arbitrary normalization conditions ṽ∞
and η̃∞. The boundary conditions for ṽ and η̃ at the wall and in the free stream are
then

y = 0: ṽ = Dṽ = η̃ = 0, (2.18a)

y = y∞: ṽ = ṽ∞, η̃ = η̃∞. (2.18b)

These five conditions determine the constants in (2.17), and a shooting method can
be employed to solve (2.13). Jacobs & Durbin (1998) observe, however, that shooting
techniques often do not converge, in particular when ω is small. They suggest instead
a method to impose a boundedness condition for the eigenfunction ṽ at y∞, based on
the evaluation of (D2 + γ 2)ṽ at two points y1 and y2 in the free stream,[

(D2 + γ 2)ṽ
]
y1[

(D2 + γ 2)ṽ
]
y2

= e
√

α2+β2(y2−y1). (2.19)

This amounts to a boundary-value problem for ṽ with the conditions (2.18a) at
the wall and condition (2.19) near the free-stream boundary. The normalization
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Figure 3. (a) Wall-normal shape of a free-stream eigenmode from the continuous spectrum of
the Orr–Sommerfeld equation, (α, β) = (0.130, −0.140), αi = 0.00081, γ = 0.377, ω = −0.01.
(b) Amplitude in the wall-normal direction of a travelling discrete boundary-layer eigenmode,
(α, β) = (0.102, −0.140), αi = 0.00474, ω = −0.01.

(2.18b) is then used to scale the mode to the desired energy. In summary, the spatial
eigenvalue α is obtained from (2.16), and the associated eigenfunctions for ṽ and η̃

from the numerical solution of the Orr–Sommerfeld/Squire system together with the
boundary conditions (2.18) and (2.19). The chordwise and spanwise spectral velocities
ũ and w̃ are computed from the definition of η̃ in conjunction with the continuity
equation. The shape of a continuous eigenmode along the wall-normal coordinate
y is shown in figure 3(a). Clearly, the amplitude of the eigenfunction is quenched
to zero towards the plate, as desired, and oscillates in the free stream. Therefore,
the continuous modes are herein also referred to as free-stream modes. Figure 3(b)
shows the wall-normal amplitude for an eigenmode from the discrete spectrum of
the Orr–Sommerfeld/Squire operator. Since it is large inside the boundary layer and
tends to zero in the outer flow, the discrete modes are often called boundary-layer
modes. In contrast to the free-stream modes, which are always damped, there exist
unstable discrete modes in three-dimensional boundary layers for certain parameter
combinations (m, φ0; Reδ∗, β, ω), where β and ω are the spanwise wavenumber and the
angular frequency of the eigenmode. The crossflow instability waves are an example
for unstable discrete modes, and figure 3(b) shows a crossflow mode.

As already mentioned, the vortical free-stream mode is imposed in the fringe
region and re-cycled to the inflow plane of the computational domain. Therefore,
when computing the continuous mode, the Reynolds number is fixed to the inflow
value Reδ∗

0
, whereas β , γ and ω can be chosen arbitrarily. In § 4, the choice of the

continuous-spectrum eigenmodes as a model for free-stream disturbances will be
motivated.

To study the spatial evolution of the unstable modes, we may superimpose a
discrete boundary-layer mode on the base flow in the same manner as the continuous
free-stream mode. The spatial eigenvalues and eigenshapes of the discrete modes
are computed by solving the spatial Orr–Sommerfeld/Squire eigenvalue problem, as
described in Schmid & Henningson (2001), for instance.

2.4. Computational domain and numerical resolution

Table 1 gives the dimensions Lx , Ly and Lz of the computational domain together
with the corresponding resolution Nx , Ny and Nz along the spatial coordinates. The
range of inflow Reynolds numbers Reδ∗

0
and the type of disturbance forcing are also
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Box Lx × Ly Lz Nx × Ny × Nz Reδ∗
0

Disturbance forcing

A 883.2 × 20.0 12.0 . . . 73.0 768 × 65 × 8 220 Surface roughness
B 2048.0 × 50.0 23.0 . . . 73.0 512 × 97 × 4 220 . . . 353 Free-stream mode
C 3072.0 × 50.0 33.0, 66.0, 99.0 1536 × 97 × 12 220 Surface roughness +

free-stream mode

Table 1. Dimensions and resolution of the computational domain. Inflow Reynolds number
and type of disturbance forcing.

given in the table. Three different computational boxes, A, B and C, have been used
to obtain the results for receptivity to wall roughness, vortical free-stream modes and
their combination. Note that the spanwise width Lz of the domain has been varied
for boxes A and B to study the receptivity when varying the spanwise wavenumber of
the unstable waves, and that the inflow Reynolds number Reδ∗

0
has been also varied

when studying the effect of free-stream modes. The box dimensions Lx , Ly , and Lz

have been scaled in such a way that the physical box dimensions Lxδ
∗
0 , Lyδ

∗
0 , and

Lzδ
∗
0 , and thus the resolution, remain unchanged for all values of Reδ∗

0
. The listed

values of Lx , Ly and Lz for box B refer to Reδ∗
0
= 220.

3. Receptivity of stationary modes to localized wall roughness
It is known that surface roughness provides an efficient mechanism for the

excitation of steady crossflow instability waves if the roughness contour contains
the wavenumber of the instability (see e.g. Crouch 1993; Choudhari 1994; Bertolotti
2000). The receptivity process, connecting the forcing due to the roughness element
with the response of the boundary layer, is described in terms of the receptivity
coefficient CR(βR, ω; m, φ0), where βR is the spanwise wavenumber of the roughness,
and the frequency ω is zero for steady surface roughness,

CR =
AR

εhH (αCF )
. (3.1)

AR is the receptivity amplitude, i.e. the amplitude of the excited steady crossflow
instability at the roughness station xR , defined at the centre of the bump. H (αR)
denotes the representation of the chordwise bump shape hx(x) in Fourier space,
and αCF is the chordwise wavenumber of the excited stationary crossflow instability

at xR . Here, the wall-normal maximum of
√

u2 is chosen as the measure for the
boundary-layer response, where u is the chordwise disturbance velocity. CR may be
interpreted as the efficiency of the forcing mechanism – here the roughness bump – in
exciting the least stable eigenmode of the boundary layer – here the steady crossflow
mode. A similar definition is used in Crouch (1993), Choudhari (1994) and Ng
& Crouch (1999) in the context of finite Reynolds-number theory. In contrast to
these studies, non-parallel effects on the receptivity process are included here by
employing direct numerical simulation. Various roughness elements are considered,
differing in their chordwise shape hx(x) as well as in their spanwise wavenumber βR .
Most of the results are obtained by using roughness with maximum amplitude εh

being much smaller than the characteristic length δ∗
0 of the basic flow such that the

linearized perturbation equations are valid. In § 3.2 higher roughness elements are
also considered and the nonlinear disturbance equations are solved. Three chordwise
roughness contours are considered, with parameters compiled in table 2. In order to
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Shape εh hstart hend hrise hfall

I 0.021 4.6 32.2 11.5 11.5
II 0.021 9.2 27.6 6.9 6.9
III 0.021 13.8 23.0 3.45 3.45

Table 2. Three different chordwise shape functions hx(x) for surface roughness. Parameters
according to (2.9) and (2.10).

0 200 400
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y

Figure 4. Boundary-layer response to roughness at xR = 18.4 (Reδ∗ = 234), expressed as
wall-normal maximum of the chordwise disturbance-velocity amplitude (thick lines), and
evolution of the excited steady crossflow instability waves (thin lines).

investigate the dependence of the receptivity coefficient CR on the spanwise scale of
the roughness, the width Lz of the domain is changed according to table 1. The values
for box A correspond to spanwise roughness wavenumbers βR between 0.09 and 0.52.

3.1. Low-amplitude roughness

Figure 4 shows the boundary-layer response to perturbations caused by roughness
elements of different spanwise wavenumbers βR (thick lines). For each case, a second
simulation employing a smooth plate is performed, where the wall-normal velocity
distribution of the stationary crossflow eigenmode at |βCF | = βR is prescribed at the
inflow plane. The response of the base flow to this initial condition is displayed as
a thin line in figure 4. Comparison of the thick and the thin curves reveals that the
flow response in the vicinity of the roughness is characterized by transient behaviour,
while the downstream evolution of the boundary-layer disturbance is fully determined
by the excited steady crossflow instability. The receptivity amplitude AR is extracted
from the total disturbance (thick lines) by tracing back the contribution of the
unstable crossflow mode (thin lines) to the roughness station xR . It can be concluded
that surface roughness provides an efficient linear mechanism for the excitation of
zero-frequency crossflow instability.

Figure 4 also suggests that the efficiency of the receptivity mechanism is strongly
dependent on the spanwise wavenumber of the roughness element. Further, to verify
the assumption of shape-independent receptivity, roughness elements of different
chordwise shape are considered. These two aspects have been investigated in detail,
and the result is reported in figure 5. In figure 5(a), the three chordwise roughness
contours under consideration are displayed in physical (insertion) and in Fourier space.
Depending on their spanwise wavenumber βR , these roughness elements will force
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Figure 5. (a) Three roughness shapes in physical (inset) and spectral space. The symbols mark
the Fourier component of the spectral bump shape at the chordwise wavenumber αCF of the
excited steady crossflow eigenmode (i.e. αCF = αR), shown for three spanwise wavenumbers of
the roughness: βR = 0.09 (♦), 0.19 (©) and 0.44 (�). (b) Thick lines: receptivity coefficient
in spatially evolving flow versus spanwise wavenumber of the roughness for the three bump
shapes in (a). The roughness is placed at xR = 18.4 (Reδ∗ = 234). The symbols correspond to
those in (a). Thin solid line: receptivity coefficient in parallel flow.

different unstable boundary-layer modes with different efficiency. This is highlighted
in the figure by the symbols, marking the spectral component H (αCF ) for different
roughness elements. H (αCF ) measures to which degree the chordwise wavenumber αCF

of the triggered stationary crossflow mode is represented in the three spectral shape
functions. In figure 5(b), the influence of chordwise shape and spanwise wavenumber
of the roughness on the receptivity coefficient is depicted. Results for receptivity
in parallel boundary layers are also included (thin curve). They are obtained by
employing the same roughness elements in parallel base flow for the Reynolds number
at the roughness station, i.e. Reδ∗ = 234. The receptivity coefficients CR in parallel flow
could be extracted solely for wavenumbers pertaining to unstable or marginally stable
crossflow modes. In these cases, the least stable mode is clearly distinguishable from
the total disturbance further downstream. It can be concluded from figure 5(b) that
non-parallel flow (thick lines) is less receptive to roughness-induced perturbations
than parallel flow (thin line). In particular, roughness elements of large spanwise
wavenumber, triggering instabilities with short wavelengths, give lower receptivity
coefficients in spatially developing flow. This is in line with the findings of Collis &
Lele (1999) who demonstrated that non-parallel effects attenuate roughness-related
receptivity. They used the steady solution to flow around a swept parabolic cylinder
as base flow and applied a bump of Gaussian shape near the leading edge.

Two additional conclusions can be drawn from figure 5(b). (i) An optimal spanwise
wavenumber, βR ≈ 0.19, can be identified, at which the receptivity process in non-
parallel flow is most efficient. (ii) For the three roughness contours under consideration,
the receptivity coefficient is independent of the specific shape over a large range of
values for βR . However, for βR � 0.41, the shape-independence of CR is broken. For
roughness contour I (solid line), the CR curve exhibits a remarkable jump around
βR = 0.44. Comparing figures 5(a) and 5(b) reveals that this jump is occurring, as
bump shape I has almost zero component H (αCF ) at the instability wavenumber
(αCF , |βCF |) = (0.40, 0.44) (square symbol). Also, the amplitude AR of the unstable
eigenmode is small, if βR = 0.44, as shown in figure 4. The receptivity coefficient CR no
longer provides a shape-independent universal measure for receptivity to roughness,
if both numerator and denominator in (3.1) become small. In such situations, CR
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Figure 6. Thick lines: receptivity coefficients |CR,0| (—–) and |CR,1| (---) according to (3.2).
Thin lines: receptivity coefficient CR , (3.1), as in figure 5(b).

describes the receptivity process improperly; moreover, CR is no longer well-defined,
when H (αCF ) is zero. Also, the receptivity coefficients computed from the roughness
contours II and III start to differ for large values of βR , i.e. when the bump is longer
than the crossflow wavelength.

Unlike in parallel flow, where the receptivity amplitude AR of the crossflow mode
vanishes as H (αCF ) → 0, low values of AR are still observed in downstream-evolving
boundary layers, even when the spectrum of the roughness element contains no energy
at all at the instability wavenumber. The receptivity coefficient CR , derived for parallel
base flow, cannot capture this non-parallel effect. To provide an improved measure for
roughness-related receptivity when H (αCF ) becomes small, Bertolotti (2000) suggests
an alternative expression for the receptivity amplitude,

AR = εh|CR,0H (αCF ) + CR,1H
′(αCF )|, (3.2)

i.e. a second term depending on the slope H ′(αCF ) ≡ (dH/dα)αCF
is introduced.

Bertolotti derives (3.2) by expanding the base flow and the disturbance in the
chordwise direction about the roughness station xR . The expansion is truncated
at first order and analysed in spectral space. As shown in Bertolotti (2000), the term
CR,0H (αCF ) represents the contribution to AR at zeroth order, while CR,1H

′(αCF ) is
the first-order correction due to the non-parallel evolution of the base flow.

The zeroth- and first-order receptivity coefficients CR,0 and CR,1 can be extracted
from the present DNS data by solving the following linear system,(

CR,0

CR,1

)
=

1

εh

(
H1 H ′

1

H2 H ′
2

)−1

αCF

(
AR,1

AR,2

)
DNS

, (3.3)

using two of the roughness contours under consideration. The validity of Bertolotti’s
ansatz for AR is checked by applying (3.2) with the coefficients CR,0 and CR,1 from
(3.3) to results obtained when forcing with the third roughness contour,

AR,3|pred = εh(CR,0H3 + CR,1H
′
3)αCF

≡ AR,3|DNS . (3.4)

AR,3|pred denotes the wave amplitude and phase predicted by model (3.2), and AR,3|DNS

is the receptivity amplitude obtained by DNS. AR,3|pred = AR,3|DNS is indeed obtained
with good accuracy for all spanwise wavenumbers under consideration, both in terms
of amplitude and phase. The receptivity coefficients |CR,0| and |CR,1| are plotted versus
βR in figure 6. Clearly, there is very good agreement between the standard receptivity
coefficient CR and the zeroth-order coefficient |CR,0| for βR � 0.41. In this regime,
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receptivity to roughness is adequately described by a receptivity coefficient based only
on H (αCF ). For βR � 0.41, however, the correction term CR,1H

′(αCF ) is no longer
negligible. |CR,0| drops down in this region and no longer exhibits the peak seen in
the curve for CR . |CR,0| in combination with |CR,1| is thus a more appropriate measure
for receptivity to roughness bumps with very low spectral amplitude H (αCF ) than the
standard coefficient CR . Following Bertolotti (2000) who attributes the contribution
proportional to H ′(αCF ) to the non-parallel nature of the base flow, we conclude
from figure 6 that the non-parallel correction CR,1H

′(αCF ) is most important for
large wavenumbers of the triggered unstable boundary-layer mode. The wavelength
of the crossflow disturbance is then considerably shorter than the chordwise extent of
the roughness element. Since |CR,0| and |CR,1| fulfil (3.2) for all three roughness
contours, they represent to first order a shape-independent universal measure for
receptivity to roughness. To summarize, the non-parallel nature of the base flow
becomes manifest in two ways: a stronger effect over the whole wavenumber range
plotted in figure 5(b) and a weaker effect only for large wavenumbers displayed in
figure 6.

A roughness element with even larger chordwise length may be designed such
that the spectral shape has a zero crossing at (αCF , βCF ) = (0.17, −0.19), that is,
at the most receptive wavenumber. We have performed a simulation with a bump
with H (αCF = 0.17) = 9.6 × 10−2, which is about 60 times smaller than the spectral
amplitude of the short bump contour III at that wavenumber. The difference in
amplitude AR of the triggered unstable mode is, however, much less; AR is 9.6 × 10−4

for the long versus 1.7 × 10−3 for the short roughness element. The curve for the
classical receptivity coefficient CR would again exhibit large peaks at every zero
crossing of the spectral contour H , while the curves for |CR,0| and |CR,1| look smooth.
They differ, however, from the corresponding curves in figure 6 in that the contribution
of the first-order coefficient |CR,1| becomes stronger. We conclude that the receptivity
coefficients |CR,0| and |CR,1| preserve their independence of roughness shape only
within a limited range of bump length. For longer, less localized roughness elements,
contributions related to higher derivatives of H are likely to come into play. We want
to emphasize, however, that the classical receptivity coefficient CR is nevertheless an
appropriate representation of roughness receptivity in the framework of localized
receptivity.

The response of the base flow to disturbances introduced by localized roughness
elements at different chordwise stations xR is studied next. Bump shape III is
considered here. The spanwise scale of the roughness is chosen to be λz = 50
inflow displacement thicknesses, corresponding to βR = 0.126. These values match
approximatively the spanwise scale of the roughness array in the experiments by
Reibert et al. (1996). As shown in the previous section, the standard receptivity
coefficient CR is independent of the roughness shape at βR = 0.126 and can thus
be used here. The dependence of CR on the chordwise position xR of the roughness
element is depicted in figure 7 (solid line). The dashed line shows the effective
receptivity coefficient CR,eff, compensating for the local decay or growth of the excited
steady crossflow instability at xR ,

CR,eff =
CR

eNR
= CR

AI

AR

=
AI

εhH (αCF )
, (3.5)

where NR is the N-factor of the crossflow disturbance at xR , and AI is the amplitude at
the first neutral point of the crossflow mode. While CR is a measure for the receptivity
process only, CR,eff can be used to determine the disturbance amplitude A(x) in the
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Figure 7. Receptivity coefficient for surface roughness as a function of the chordwise station
xR of the roughness element (—–). Roughness shape III is used, and βR = 0.126. Effective
receptivity coefficient CR,eff (---). ◦, first neutral point of the excited steady cross-flow mode.

linear regime downstream of the roughness,

A(x) = εhH (αCF )CR,eff eN(x). (3.6)

The receptivity process is most efficient upstream of the first neutral point and drops
down rapidly downstream of it. This is in line with results for parallel flow, obtained
by finite Reynolds-number theory (see e.g. Crouch 1993).

3.2. Larger-amplitude roughness

In the previous section, receptivity to localized surface roughness of low amplitude
was discussed. The amplitude AR of the excited unstable crossflow mode is then
proportional to the height εh of these tiny roughness elements, leading to constant
receptivity coefficients as εh is changed. In this section, receptivity to roughness with
higher amplitude is investigated to identify at which bump height nonlinear behaviour
starts to affect the receptivity. The roughness elements used here are of shape I, II
and III and have a fixed spanwise wavenumber of βR = 0.19. This choice guarantees
efficient receptivity and negligible non-parallel effects, as seen before. The height of
the roughness elements is chosen in the range 0.02 � ε � 0.2. At the highest bump
amplitude ε = 0.2, a region of linear growth of the unstable mode is no longer
clearly identified, whereas the flow downstream of the roughness is characterized by
saturating crossflow modes. Nonlinear behaviour is hence apparent at this roughness
amplitude. However, also below this height, nonlinearity has an effect on receptivity
figure (8). Beyond ε = 0.05, CR becomes dependent on both the amplitude and the
shape of the roughness element. In particular, the dashed-dotted curve obtained by
inserting the shortest roughness element (shape III) deviates to lower values from the
constant CR found for low roughness height. Bump I, conversely, retains a constant
receptivity efficiency even for nonlinearly behaving crossflow modes. In summary, the
deviation of CR from its value for tiny roughness remains rather small for the plotted
range of roughness amplitudes, i.e. nonlinearity has a weaker effect on the receptivity
process than on the subsequent growth of the triggered instability (saturation).

4. Receptivity of travelling crossflow modes to vortical free-stream disturbances
In this section, we investigate whether three-dimensional boundary-layer flow over

a smooth plate is receptive to vortical free-stream perturbations. The disturbance is
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Figure 8. Effect of bump height on receptivity to surface roughness. βR = 0.19. Bump
shape I (—–), II (---) and III (-.-).

modelled by means of eigenfunctions from the continuous wavenumber spectrum of
the Orr–Sommerfeld/Squire operator, which are often called continuous modes. Since
free-stream turbulence is in general an unsteady phenomenon, the study is restricted
to the unsteady receptivity process. In particular, receptivity to one single free-stream
mode is examined, nonlinear interaction with other modes being neglected. The
computation of the Orr–Sommerfeld solution ṽ and the Squire solution η̃ in the free
stream has been outlined in § 2.3.2. The chordwise and spanwise disturbance velocities
ũ and w̃ can be calculated from the normal velocity ṽ and vorticity η̃ as

ũ = ũOS + ũSq =
iα

α2 + β2
Dṽ − iβ

α2 + β2
η̃, (4.1a)

w̃ = w̃OS + w̃Sq =
iβ

α2 + β2
Dṽ +

iα

α2 + β2
η̃. (4.1b)

The Orr–Sommerfeld and the Squire solution are hence coupled in the ũ and the
w̃ component of the eigenmode (ũ, ṽ, w̃, η̃)T . Instead of such a full continuous-
spectrum mode, a continuous mode without the η̃ contribution can be considered, i.e.
(ũOS, ṽ, w̃OS, 0)T . As only the contribution of the Orr–Sommerfeld equation is present
in such a mode, it is referred to as the Orr–Sommerfeld mode here. The use of Orr–
Sommerfeld modes as a model for free-stream vorticity can be justified as follows.
In the flow upstream of the leading edge of the plate there is no coupling between
normal velocity and vorticity. Homogeneous isotropic turbulence is an example of
an incoming flow with independent evolution of ṽ and η̃. The coupling sets in, when
the flow attaches to the plate at the leading edge. The Orr–Sommerfeld mode forces
the corresponding set of Squire modes and develops gradually into a full mode. This
is a viscous slow process. In the simulations, the free-stream mode is introduced
a short distance downstream of the leading edge, where the forcing of the Squire
modes and thus the coupling between ṽ and η̃ has just been initiated. For the cases
considered here, the shape of the free-stream disturbance is still similar to that of the
Orr–Sommerfeld mode without the η̃ contribution.

4.1. Penetration depth and chordwise decay

Two different characteristics of the Orr–Sommerfeld free-stream modes have been
identified to play a role for unsteady receptivity: their ability to penetrate into the
boundary layer and their downstream decay rate. Jacobs & Durbin (1998) introduce
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Figure 9. Penetration depth Δ (—–) and decay rate αi (---) of the continuous
Orr–Sommerfeld modes for ranges of (a) Reynolds number Reδ , (b) angular frequency ω,
(c) wall-normal wavenumber γ and (d) spanwise wavenumber β . The plots are based on
(Reδ, ω; β, γ )=(220, −0.01; −0.14, 0.126).

the penetration depth Δ as the distance from the boundary-layer edge, at which
the magnitude of the eigenshape ṽ has decayed to 1 % of its free-stream value. They
obtained a relationship for Blasius flow between Δ, frequency ω and Reynolds number
Re =

√
U ∗

∞x∗/ν∗,

Δ ∼ (ωRe)−b, (4.2)

where the exponent b takes values of the order of 0.1 depending on the wall-normal
wavenumber γ . Zaki & Durbin (2005) point out that not only the penetration depth,
but also the decay rate of the vortical disturbance must be considered. The free-stream
mode is efficient in perturbing the boundary layer if it penetrates deeply into it, or if
it decays slowly and thus carries enough energy downstream. At fixed Re and ω, these
two features are competitive: deeply penetrating modes with large γ decay rapidly,
while modes with smaller γ penetrate and decay less. Maslowe & Spiteri (2001)
present a similar analysis for the continuous-spectrum modes of a two-dimensional
boundary layer in a streamwise pressure gradient modelled by the Falkner–Skan
similarity solution. They find that (4.2) holds also for the adverse pressure-gradient
boundary layer. However, the constant of proportionality is different, as shown in
Zaki & Durbin (2006): Penetration depth is reduced in adverse and enhanced in
favourable pressure gradient as compared to Blasius flow.

We perform a similar investigation of penetration depth and decay rate of the
continuous-spectrum modes in the three-dimensional boundary layer. A parametric
study for free-stream modes in Falkner–Skan–Cooke flow is presented in figure 9.
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The behaviour of the penetration depth Δ (solid) and decay rate αi (dashed) of the
continuous Orr–Sommerfeld modes is shown for ranges of (a) Reynolds number,
(b) angular frequency, (c) wall-normal wavenumber and (d) spanwise wavenumber.
Δ is normalized by the 99 % boundary-layer thickness and is defined as the distance
below the boundary-layer edge, at which the chordwise disturbance amplitude |ũ| has
dropped to 5 % of its maximum value in the outer flow. Figures 9(a) to 9(c) reveal that
deeply penetrating free-stream modes suffer from a strong decay. In figure 9(a), a large
penetration depth of more than 25 % of the boundary-layer thickness is obtained at
small Reynolds numbers, i.e. close to the leading edge of the plate, whereas Δ quickly
drops downstream.

The penetration depth assumes large values in the positive ω half-plane in figure 9(b)
and the maximum is obtained at ω = 0.08. This is in contrast to the result for Blasius
flow, (4.2), where Δ approaches its maximum for ω → 0. The most unstable crossflow
modes are, however, obtained for ω < 0, i.e. the negative frequency range is more
relevant for the study of receptivity to continuous modes. Note that the counterpart
of ω in the dispersion relation for Blasius flow is the quantity (ω − βW∞) in (2.16)
here, which is positive in figure 9(b) also in the range of negative ω. We could not
find a relation for the penetration depth Δ corresponding to (4.2), either in terms of
ωRe or of (ω − βW∞)Re. In light of the observation by Maslowe & Spiteri (2001)
that the free-stream modes in Falkner–Skan flow behave similarly to those in Blasius
flow, it can be concluded that the different behaviour of Δ with ω, β and Re is a
result of the spanwise component of the base flow.

As shown in figure 9(c), penetration depth grows with increasing wall-normal
wavenumber. The free-stream modes of the smallest normal length scale penetrate
the boundary layer to a depth of up to 70 % of its thickness, although they die out
rapidly.

In figure 9(d), a region of deep penetration exists, while the decay rate is small.
The curve for Δ exhibits a remarkable peak at small spanwise wavenumbers. These
waves have also a small chordwise wavenumber. At β = 0, the continuous mode
becomes a two-dimensional wave. The most deeply penetrating free-stream modes
are thus long waves propagating nearly perpendicularly to the leading edge. However,
these modes are irrelevant for the present receptivity study, since they do not trigger
boundary-layer instabilities. The most unstable travelling eigenmodes are found at
negative values of β , while α > 0. These disturbances propagate in the direction of the
crossflow. In this wavenumber regime, the penetration depth for free-stream vorticity
is almost constant at a level of � 28 %.

To conclude, comparison with the results in Jacobs & Durbin (1998) reveals that
in Falkner–Skan–Cooke flow, mean shear hampers the penetration of free-stream
vorticity into the boundary layer much more than in Blasius flow.

4.2. Scale conversion

Direct excitation of travelling boundary-layer instability waves requires an external
perturbation with matching wavenumber vector and frequency. Free-stream
disturbances, however, have, in general, different length scales to the unstable
eigenmode of the boundary layer. Goldstein (1985) demonstrates for Blasius flow
that there is nonetheless a receptivity mechanism to acoustic free-stream disturbances,
triggering Tollmien–Schlichting (TS) instability. He introduces the concept of scale
reduction, by which the large length scale of the acoustic wave is converted into
the smaller scale of the TS wave. Goldstein (1985) shows that the scale-conversion
process is efficient, in particular around a surface irregularity. Scattering of acoustic
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Figure 10. Horizontal wavenumber angle ψ = arctan(αr/|β|) for the continuous
Orr–Sommerfeld mode (ω = −0.01, β = −0.14, γ = 0.126, —–) and the excited travelling
crossflow wave (---) and local angle φ of the external streamline (-.-). The symbols mark the
wave angle of the forced boundary-layer disturbance and are extracted from DNS data.

waves at roughness elements, suction holes or other types of wall disturbances has
indeed been shown to be an efficient receptivity mechanism for TS waves (e.g. Crouch
1992; Choudhari & Streett 1992; Crouch & Spalart 1995).

Also, in swept-plate flow, the horizontal length scales of the free-stream
perturbations differ from those of the boundary-layer disturbances. In figure 10,
the angle ψ = arctan(αr/|β|) of the horizontal wavenumber vector of a vortical
free-stream mode and a travelling crossflow mode are compared. Both modes are
computed at a frequency of ω = −0.01 and a spanwise wavenumber of β = −0.14.
The angle of the outer streamline is also plotted for comparison, showing that the
free-stream vortex is more closely aligned with the external streamlines than the
unsteady crossflow wave. Clearly, the wavenumber vectors for the free-stream wave
and the crossflow mode are not aligned at any location, which reflects their different
chordwise wavenumber αr = Re{α}. Specifically, the chordwise wavenumber of the
travelling crossflow mode is smaller than that of the free-stream disturbance. Further,
the relative misalignment between the two waves is nearly constant versus Reδ∗ .
Therefore there is no direct resonance between the vortical free-stream disturbance
and the unsteady crossflow instability at any location in the flow, and it can be
concluded that length-scale conversion will be a key element for unsteady receptivity
also in three-dimensional boundary layers. This becomes evident in figure 10 by the
symbols showing the wave-vector angle of the largest fluctuations inside the boundary
layer, when it is forced by a vortical free-stream mode. These data have been extracted
from a DNS velocity field. Upstream, the wave vector of the forced disturbance is
more closely aligned with the free-stream mode, whereas it turns into the direction
of the excited crossflow mode further downstream. It also becomes apparent that in
contrast to Blasius flow, the chordwise length scale of the free-stream disturbance must
be enhanced rather than reduced to match that of the boundary-layer eigenmode.
Since scale conversion relies on rapid mean-flow changes, it is expected to be efficient
in particular in the strongly developing upstream region of the boundary layer and
around wall roughness.

4.3. Receptivity coefficient

Receptivity of the Blasius boundary layer to vortical disturbances in the outer
flow has been thoroughly investigated previously. Different models for free-stream
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Figure 11. (a) Response of the non-parallel three-dimensional boundary layer to free-stream
vorticity. Thick lines: spatial evolution of the boundary-layer disturbance, excited by a
continuous Orr–Sommerfeld mode (ω = −0.01, β = −0.14, γ = 0.126) at Reδ∗ = 220.
Thin lines: spatial evolution of the corresponding crossflow instability wave. (b) Response of a
parallel Falkner–Skan–Cooke boundary layer at Reδ∗ = 360 to a continuous Orr–Sommerfeld
mode (ω = −0.01, β = −0.14, γ = 0.126).

vorticity have been employed: streamwise vortices by Bertolotti (1997) and Bertolotti
& Kendall (1997), oblique waves by Berlin & Henningson (1999) and eigenmodes
from the continuous spectrum of the Orr–Sommerfeld/Squire operator by e.g. Jacobs
& Durbin (2001), Brandt et al. (2002, 2004) and Zaki & Durbin (2005). In all cases,
the receptivity process was characterized by the formation of streamwise elongated
structures, referred to as streaks, while the excitation of TS waves was bypassed.
The streaks are not eigenmodes of the base flow and undergo algebraic instead of
exponential growth.

In this paper, we investigate the receptivity mechanism to free-stream vorticity in
the three-dimensional swept-plate boundary layer. Figure 11(a) shows the evolution
of the boundary-layer disturbance, when a continuous Orr–Sommerfeld mode is
prescribed at the inflow plane of the computational domain. A transient region can
be identified up to x � 1000, whereas further downstream, the evolution of the
boundary-layer disturbance is fully determined by exponential growth of unsteady
crossflow instability. Hence, the swept-plate boundary layer supports receptivity for
travelling crossflow modes to free-stream vortices. From figure 10, it is clear that
there is no location where the wavenumbers of free-stream disturbance and unstable
eigenmode match. Wavenumber reduction from the forcing wavenumber αFS to
the eigenmode wavenumber αCF through chordwise mean-flow variations is thus a
requirement for the excitation of the observed crossflow instability.

The upstream transient growth of the boundary-layer disturbance in figure 11(a) is
mainly due to the forcing of Squire modes by the Orr–Sommerfeld free-stream mode,
as also seen in Zaki & Durbin (2005). These are all stable but non-normal, thus
giving rise to non-modal growth. Some transient behaviour might also result from
the fact that the free-stream modes are eigenmodes of the Orr–Sommerfeld/Squire
operator, which might cause some initial adjustment to the non-parallel mean flow.
We performed tests on domains with different lengths of the fringe region and heights
of the free stream. This had small effects on the adjustment of the free-stream mode,
and we found that the growth of the unstable eigenmode was hardly affected.

The significance of the strongly non-parallel upstream region of the three-
dimensional base flow for the receptivity due to free-stream vorticity becomes evident
through figure 11(b). This plot shows the response of the parallel Falkner–Skan–Cooke
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Figure 12. Dependence of the receptivity coefficient to free-stream vorticity on (a) the
wall-normal wavenumber, (b) the spanwise wavenumber and (c) the angular frequency
of the vortical mode. In (d), the influence of the chordwise station on CV is shown, at
which the free-stream disturbance is prescribed (—–). Effective receptivity coefficient (---).
◦, the first neutral point of the excited unsteady crossflow mode. The plots are based on
(Reδ, ω; β, γ )=(220, −0.01; −0.19, 0.126), marked by the cross.

boundary layer to forcing with a free-stream vortical mode at an unstable Reynolds
number, and the result is obtained by means of DNS of the parallel mean flow. Clearly,
no unstable crossflow wave is excited, that is, removing the non-parallel nature of the
base flow deactivates the unsteady receptivity mechanism seen in figure 11(a). This
observation also confirms that the required length-scale conversion discussed in the
previous subsection is only supported in the spatially developing flow.

The receptivity mechanism for travelling crossflow instability is quantified in terms
of the receptivity coefficient CV = CV (β, ω; m, φ0),

CV =
AR

εv

, (4.3)

where AR is the receptivity amplitude of the excited unsteady crossflow wave, and
εv is the maximum amplitude of the vortical free-stream mode, assumed to be small.
Both amplitudes are taken at the inflow plane of the domain, where the free-stream

mode is prescribed. They are measured in terms of the wall-normal maximum of
√

u2.
Figure 12(a) shows the influence of the wall-normal wavenumber, figure 12(b) the
spanwise wavenumber and figure 12(c) the angular frequency of the Orr–Sommerfeld
free-stream mode on the receptivity coefficient. The vortical disturbance is computed
at Reδ∗ = 220. Figure 12(d) displays the dependence of CV on the chordwise station,
at which the vortical mode is introduced in the free stream.
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Figure 12(a) shows that receptivity is most efficient for free-stream modes with a
large wall-normal length scale. The maximum in CV is obtained at γ = 0.063. This
corresponds to a normal scale of λy = 30.44 times the 99 % boundary-layer thickness
at the inflow plane. Large receptivity coefficients are also observed in the range of
small values for λy , namely at γ = 1.508 (λy = 1.27 inlet 99 %-thicknesses), where
CV > 0.3. In contrast, CV drops down to almost zero for the intermediate scales.
Comparison with figure 9(c) suggests that the receptivity mechanism is most efficient
for vortical free-stream modes of either low decay rate or large penetration depth. On
the other hand, typical energy spectra for turbulent fields reveal that turbulent kinetic
energy is concentrated on the small wavenumbers. Hence, the deeply penetrating
vortical modes of large γ might in practice be unimportant for the transition process,
in spite of the rather large receptivity coefficients associated with them. In figure
12(b), an optimal spanwise wavenumber of β = −0.14 can be identified, at which CV

is maximum. Compare with steady receptivity to surface roughness, § 3.1, being most
efficient at β = −0.19.

Figure 12(c) shows that the efficiency of the receptivity process increases when
ω approaches zero. The figure is restricted to the negative ω half-plane, where
the unstable crossflow modes are found. Inspection of figure 9(b) reveals that the
increase of CV for ω → 0 can again be attributed to a large penetration depth. Also
Jacobs & Durbin (1998) found maximum receptivity in Blasius flow for the deeply
penetrating vortical modes of low frequency. Figure 12(d) displays the dependence of
CV on the chordwise station, where the free-stream mode is prescribed. This location
is equivalent with the inflow plane. Hence, various domains with different inflow
Reynolds numbers Reδ∗,0 are used for this study, and the vortical mode is computed
at the according inflow Reynolds number. The origin in the figure complies with
Reδ∗,0 = 220. As in figure 6, it is again meaningful to consider the effective receptivity
coefficient,

CV,eff =
CV

eNR
= CV

AI

AR

=
AI

εv

, (4.4)

to take the decay or growth of the crossflow instability at the inflow plane into
account. NR is the N-factor of the unsteady crossflow mode at the inlet and AI is
its amplitude at the first neutral point. Clearly, receptivity to free-stream vorticity is
most efficient at x = 0 (Reδ∗,0 = 220) where the boundary layer is thin and highly
non-parallel. The same result has been obtained in figure 6 for steady receptivity
to surface roughness. It can be concluded that the scale-conversion process required
for receptivity is most efficient in the rapidly evolving region near the leading edge.
However, the curves in figure 12(d) suggest that even larger receptivity coefficients
can be expected upstream of Reδ∗,0 = 220 in the immediate vicinity of the leading
edge. These receptivity sites cannot, however, be addressed by the present numerical
method.

In summary, the unsteady receptivity mechanism due to vortical free-stream modes
herein proposed has characteristics in common with both the localized and non-
localized receptivity processes so far discussed in literature. On the one hand, the
vortical disturbance resides in the entire free stream and acts non-locally on the
boundary layer. In contrast to Blasius flow, on the other hand, where the excitation
of streak-like disturbances inside the boundary layer is non-localized, the present
mechanism for unsteady crossflow modes in three-dimensional flow is efficient only
near the leading edge. In this limited region, the basic flow is sufficiently non-parallel
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Figure 13. Combination of free-stream vorticity and surface roughness. The roughness
element (βR = 0.190) excites an unstable steady eigenmode (---), while the vortical free-stream
mode (βV = −0.381) does not trigger a growing travelling mode (-.-). In combination, however,
they excite travelling crossflow instability (—–, thick curve).

to provide the length scale of the crossflow instability through scale conversion. This
is a characteristic of localized receptivity.

5. Combination of roughness and free-stream vorticity
In the presence of both surface roughness and free-stream turbulence, stationary

and travelling crossflow modes will coexist in three-dimensional boundary layers
and compete with each other. This situation is modelled here by considering the
combination of a spanwise periodic localized roughness element on the plate and
a vortical Orr–Sommerfeld mode in the free stream, both assumed to have small
amplitudes. In § § 3 and 4, it was demonstrated that there exists a direct receptivity
mechanism to localized roughness and vortical free-stream disturbances, causing the
occurrence of stationary and travelling crossflow modes in the boundary layer. These
mechanisms will still be present in the case of combined surface roughness and free-
stream vorticity. Both the steady and the unsteady receptivity process may then give
amplifying eigenmodes, which interact continuously and force a wavelike disturbance.
This process thus builds on the combination of the two direct receptivity mechanisms
discussed in the previous sections, followed by nonlinear interaction.

Next, we examine whether there exists also a receptivity mechanism based on
scattering of free-stream vorticity at the roughness in boundary layers of the Falkner–
Skan–Cooke type. For this purpose, the mean flow is exposed to a vortical mode
of spanwise wavenumber βV = −0.381 together with a roughness element with
βR = 0.190. The response of the base flow is plotted in figure 13. While a stationary
crossflow mode evolves from the steady disturbance field due to the roughness (dashed
line), no unstable travelling crossflow wave is excited by this particular free-stream
mode (dashed-dotted line). Unsteady crossflow instability is nevertheless observed
in figure 13 (solid line), as deduced by comparing with the evolution curve for the
travelling crossflow wave at βCF = −0.190 (thin solid line). The unsteady crossflow
mode is thus triggered by the interaction between the growing steady disturbance field
caused by the roughness and the decaying unsteady perturbation due to the vortical
free-stream disturbance. The spanwise wavenumber of the travelling eigenmode is
given by βCF = βV + βR , the frequency ω is provided by the free-stream disturbance,
and the chordwise wavenumber αCF by the roughness contour. Hence, the roughness
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element is responsible for the scale-enhancement process. To conclude, a receptivity
mechanism for travelling crossflow instability has been identified, linearly depending
on the amplitudes of both the free-stream vorticity and the surface roughness. It
can be seen as the crossflow counterpart of the classical mechanism for Tollmien–
Schlichting instability in Blasius flow proposed by Goldstein (1985) and Ruban (1985),
which builds on the scattering of acoustic free-stream disturbances at localized surface
roughness.

5.1. Receptivity coefficient

The receptivity mechanism shown in figure 13 and explained in the previous section
results in the excitation of a travelling unstable eigenmode of the base flow. It can be
quantified in terms of a receptivity coefficient,

CV R =
AR

εvεhH (αCF )
, (5.1)

where AR is the receptivity amplitude of the excited travelling crossflow wave at
the roughness station, and εv and εh are the amplitudes of the vortical free-
stream disturbance and the roughness element. H (αCF ) is the Fourier component
of the roughness bump at the wavenumber of the steady disturbance. Equation
(5.1) is analogous to the efficiency coefficient for receptivity to free-stream sound in
combination with roughness, as used e.g. by Crouch (1993) and Choudhari (1994) for
finite Reynolds-number theory calculations in Falkner–Skan–Cooke flow.

5.2. Results

The spanwise wavenumber βCF of the travelling crossflow wave excited via the
combination of roughness and free-stream vorticity is obtained through the sum of
the wavenumbers βV and βR of the interacting unsteady and steady disturbance,

βCF = ±βV ± βR, (5.2)

i.e. four different unsteady waves per (βV , βR) combination can be forced at second
order. In principle, an infinite number of such combinations may be considered. Here,
ω, βV and βR are chosen to keep the frequency and spanwise scale of the generated
mode constant and to examine the efficiency of the receptivity process when varying
the spanwise scale of free-stream mode and roughness. In figure 14, three (βV , βR)
combinations are reported, all summing to βCF = −0.190. The specific summation of
β and ω is highlighted by the arrow diagrams in figure 14. In the table, the receptivity
coefficient CV R is compiled. The largest coefficient is obtained in case (a), when the
spanwise wavenumber of the free-stream mode is a third and that of the roughness
element is two-thirds of the instability wavenumber βCF . For case (c), the receptivity
process is one order-of-magnitude weaker, showing that the difference between the
forcing wavenumbers, βV and βR , and the forced wavenumber βCF should not be too
large.

In figure 15, the receptivity coefficient CV R is plotted versus the chordwise station.
The effective receptivity coefficient is again shown. Case (b) in figure 14 is considered
here. Like the direct receptivity mechanisms for steady and unsteady crossflow modes,
the receptivity process due to a combination of free-stream vorticity and roughness
becomes most efficient in the region between the leading edge of the plate and the
first neutral point of the excited travelling crossflow wave.

It has been shown above that unstable tra velling disturbances can occur, even if the
unsteady forcing does not contain any unstable wavenumbers. Another scenario builds
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Figure 14. Interaction between a decaying unsteady disturbance due to free-stream vorticity
and an amplifying steady disturbance caused by localized roughness. Three combinations
of the spanwise wavenumbers βV and βR of the vortical mode and the roughness element
are considered. Excitation of an unstable travelling crossflow mode with spanwise scale
βCF = −0.190.
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Figure 15. Coefficient for receptivity to free-stream vorticity combined with surface roughness
versus chordwise location (—–) and effective receptivity coefficient (---). The spanwise
wavenumbers of the vortical mode and the roughness element are |βV | = 0.381 and βR = 0.190
(case (b) in figure 14). Circle: First neutral point of the excited unsteady crossflow wave.

on coexisting unstable stationary and travelling crossflow modes forcing an unsteady
disturbance wave by interaction. This is then not a receptivity process on its own,
but a combination of the two direct receptivity mechanisms, followed by interaction
between the triggered instability waves. Such a situation is displayed in figure 16, where
the forced wave (solid line) has again a wavenumber of β = −0.190. The chordwise
wavenumber Re{α} and the growth rate Im{α} of this wave are obtained as the sum
of the chordwise wavenumbers and growth rates of the interacting crossflow modes.
This explains why the growth rate of the induced wave is larger than that of the
unstable crossflow mode with the same spanwise wavenumber and frequency figure
(13). Modes continuously forced by two unstable waves are therefore expected to
have a large influence during the transition process. Both mechanisms, the excitation
of unsteady crossflow instability and the forcing of travelling waves by interacting
crossflow modes, need to be addressed in three-dimensional boundary layers.

6. Steady versus unsteady cross-flow instability
An important issue of receptivity and instability studies in three-dimensional

boundary-layer flow is to determine whether stationary or travelling crossflow vortices



236 L.-U. Schrader, L. Brandt and D. S. Henningson

0 1000 2000

10–6

10–4

10–2

x

max √u2

y

Figure 16. Combination of free-stream vorticity and surface roughness. Both the roughness
element (βR = 0.095, ---) and the vortical free-stream mode (βV = −0.095, -.-) excite unstable
crossflow eigenmodes, which interact and force a harmonic wave with βf = −0.190 (—–).

External perturbation Receptivity mechanism Excited disturbance C̃ C̃710

Roughess Direct Steady CF mode 0.221 2.27
Vorticity mode Direct Unsteady CF mode 0.469 10.54
Vorticity mode + roughness Coupling Unsteady CF mode 1.784 44.22

Table 3. Receptivity mechanisms for steady and unsteady crossflow (CF) instability and their
efficiency. Amplitude coefficients at the receptivity site (C̃) and at x = 710 (C̃710).

dominate the disturbance environment inside the boundary layer, see for example
Saric et al. (2003). In § § 3 to 5, three receptivity mechanisms for steady and unsteady
crossflow instability have been investigated. Their efficiency has been quantified in
terms of the receptivity coefficients CR , CV and CVR , equations (3.1), (4.3) and (5.1),
which can be used to assess the initial amplitude of the disturbance. In contrast to CV ,
CR and CVR involve the spectral amplitude H (α) of the roughness shape. In order to
compare the receptivity amplitudes AR of the excited steady and unsteady crossflow
instabilities, it is therefore convenient to re-formulate the receptivity coefficients of
the three studied mechanisms in terms of a coefficient C̃,

C̃R =
AR

εh

= H (αCF )CR, (6.1a)

C̃V =
AR

εv

= CV , (6.1b)

C̃VR =
AR

εvεh

= H (αCF )CVR. (6.1c)

Table 3 compiles the three receptivity processes and the largest associated coefficients
C̃. The maximum in C̃R is obtained for a roughness element of shape I and a
spanwise wavenumber of βR = 0.157. C̃V is largest for a free-stream mode of
βV = −0.14. The coefficient C̃VR for receptivity due to coupling at roughness is
maximum, when a roughness element of βR = 0.127 is combined with a free-stream
mode of βV = −0.063.

Whether steady or unsteady crossflow instability is dominant at the receptivity site
will depend on the relative amplitude of the wall roughness and the vortical free-stream
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mode. In the following discussion, it is assumed that the amplitude of the roughness
element is εh = 0.025, i.e. 2.5 % of the boundary-layer displacement thickness at the
inflow plane and about 2.4 % of the local displacement thickness at the roughness
station. This value corresponds approximatively to a roughness height of k = 6 μm, as
in the experiments by Reibert et al. (1996). Such a roughness bump will excite a steady
crossflow mode with an initial amplitude of AR = εhC̃R = 5.53 × 10−3. A travelling
crossflow wave of the same amplitude is obtained via direct receptivity, if a free-stream
vortex with amplitude εv = AR/C̃V = 0.012 acts on the boundary layer. To obtain
AR = 5.53 × 10−3 via the mechanism due to unsteady disturbance scattering at the
roughness, a free-stream mode with amplitude εv = AR/(εhC̃VR) = 0.124 must interact
with the roughness-induced steady disturbance. Two conclusions can be drawn.
(i) Direct unsteady receptivity for travelling crossflow instability is about ten times
more efficient than unsteady receptivity to free-stream vorticity scattered at roughness
of εh = 0.025 (� 6 μm) height. (ii) Given εh = 0.025, stationary crossflow modes will
dominate at the receptivity site as long as the vortical free-stream disturbance has an
amplitude lower than εv = 1.2 % of the chordwise free-stream velocity.

The dominating crossflow modes at the receptivity site are not necessarily the
most dangerous instability waves further downstream. To estimate the relevant
disturbances in the region of linear growth, the downstream amplitudes of the
different instability waves have to be compared with each other, thus accounting
for the initial amplification of the different unstable waves. Here, the comparison is
performed at the position x = 710, which corresponds approximately to the second
measurement station in Reibert et al. (1996). Amplitude coefficients in analogy with
(6.1) are used by replacing the receptivity amplitude AR by the wave amplitude at
x = 710, A710. They are denoted C̃710 and given in the last column of table 3. Note
that C̃710 is largest for roughness of βR = 0.217 and for free-stream vorticity of
βV = −0.190, i.e. spanwise wavenumbers other than those at the receptivity site are
dominant at x = 710. The comparison of the downstream disturbance amplitudes
leads to the following conclusions. (i) The stationary crossflow mode caused by 6 μm
roughness amplifies to A710 = εhC̃R,710 = 0.057. Travelling crossflow instability excited
via the direct receptivity process reaches the same amplitude at x = 710, when free-
stream vorticity with εv = A710/C̃V,710 = 5.38 × 10−3 acts on the boundary layer.
(ii) The receptivity process for free-stream vorticity combined with roughness requires
a continuous-spectrum mode with εv = A710/(εhC̃VR,710) = 5.13 × 10−2 and can again
not compete with the direct receptivity mechanism. Also, continuous forcing of a
non-modal wave by interacting crossflow instability, briefly mentioned at the end of
§ 5, is not relevant at x = 710, since a free-stream vortex with εv = 8.63 % would be
required to obtain A710 = 0.057.

For the roughness considered above, the amplitude of the disturbance is still
relatively low at x = 710, namely � 6 % of the free-stream velocity. Further
downstream, the competition between the stationary and the travelling crossflow
modes can lead to different results, since unsteady crossflow modes amplify at larger
growth rates than steady crossflow waves. Therefore, lower free-stream turbulence
intensities than those estimated above can lead to a transition scenario dominated
by travelling crossflow modes. Also the wave forced by interaction between two
unstable modes grows faster than the stationary crossflow modes. To summarize, in
the presence of micrometre-sized roughness, steady crossflow instability will dominate
in the boundary-layer region up to x = 710, unless the free-stream disturbances have
amplitudes of more than � 0.5 % of the free-stream velocity.
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7. Conclusions
Receptivity of the three-dimensional boundary layer developing on a swept flat

plate is investigated by direct numerical simulation. The ability of wall roughness,
free-stream vortical modes and their interaction to trigger steady and travelling
crossflow modes is shown. The base flow, solution to the Navier–Stokes equations
with Falkner–Skan–Cooke profiles as the initial condition, is chosen with a
sweep angle of 45◦ and a Hartree parameter βH = 0.33 defining the free-stream
acceleration.

Receptivity of steady crossflow vortices to localized spanwise periodic roughness
elements is examined first. Our results reproduce the main features of previous
studies in literature: roughness forces directly the unstable steady eigenmodes inside
the boundary layer, and receptivity increases when the surface roughness is located
upstream of the neutral stability points. In this work, the focus is on the validity
of the local approximation for non-parallel flows, which is based on the assumption
that receptivity is proportional to the spectral content of the roughness shape at
the chordwise instability wavenumber. This enables the definition of receptivity
coefficients independent of the particular shape of the roughness element. The present
results show that this approximation is valid as long as the chordwise extension of
the roughness is smaller than the wavelength of the unstable mode. For less localized
roughness, the receptivity process becomes dependent on the shape of the roughness
element. However, a first-order correction can be introduced as in Bertolotti (2000);
this amounts to a second receptivity coefficient which multiplies the derivative of
the spectral shape of the roughness H ′(α). This contribution is almost zero for very
localized roughness elements, characterized by flat Fourier transforms with H ′(α) ≈ 0,
and significant for waves not represented by the roughness shape, H (α) ≈ 0, i.e. waves
shorter than the characteristic chordwise length of the surface irregularity. However,
we found that the correction after Bertolotti (2000) gives roughness-shape independent
receptivity coefficients only within a limited range of chordwise bump lengths.

The influence of bump height on receptivity has been presented, as well. For the
roughness elements under consideration, it has been shown that nonlinear effects on
receptivity come into play beyond a bump amplitude of about 5 % of the displacement
thickness, leading to slowly decreasing efficiency coefficients as the roughness height
is increased. Nonlinearity has, however, a weaker effect on receptivity than on the
subsequent growth of the unstable crossflow mode.

Free-stream vortical modes impinging on a three-dimensional boundary layer
are modelled by the continuous-spectrum eigenmodes of the linearized Orr–
Sommerfeld/Squire operator. To the best of our knowledge, the modes pertaining
to the three-dimensional base flow are examined for the first time in this work. The
three-dimensional base flow is shown to cause a significantly larger damping of the
continuous modes towards the wall, which are therefore confined outside the shear
layer. Unlike in two-dimensional boundary layers, the most penetrating modes are
found to be quasi-two-dimensional waves, with very small values of the spanwise
wavenumber. This can be explained by the fact that two-dimensional waves become
insensitive to the spanwise (or crossflow) velocity component. These modes are also
associated with low values of the chordwise wavenumber, and therefore represent
large horizontal structures with scales much larger than those of the unstable waves.

The direct receptivity mechanism in the presence of free-stream modes is entirely
due to the non-parallel nature of the base flow. This provides the streamwise variations
necessary for the scale-conversion process, by which the unstable crossflow modes
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are excited. Free-stream modes have also been used previously to investigate the
receptivity of two-dimensional boundary-layer flows, where they are shown to trigger
significant transient growth of low-frequency modes. However, this is not observed
in the present case. This can be explained by the presence of strong inflectional
instabilities in three-dimensional boundary layers, and by the favourable pressure
gradient, reducing transient effects.

The efficiency of receptivity to free-stream vorticity is measured in terms of a
receptivity coefficient, defined by the ratio between the initial amplitude of the unstable
travelling mode and the level of fluctuations in the free stream. The magnitude of
the receptivity coefficient is determined by two competing effects. On the one hand,
modes with fast variations in the wall-normal direction experience larger decay rate
in the chordwise direction and are therefore less effective in forcing the boundary
layer along significant chordwise distances. At the same time, these modes are less
sheltered by the mean shear and have therefore larger support inside the boundary
layer. The three-dimensional base flow has been shown to be receptive to both deeply
penetrating vortical modes with small wall-normal scale and slowly decaying modes
with large normal length scale. The results also demonstrate that the scale conversion
of the free-stream mode is more efficient at lower Reynolds numbers, i.e. where the
streamwise variations of the base flow are more significant. This points to the need for
correct modelling of leading-edge effects in order to capture the initial entrainment
of the free-stream modes.

The coupling between steady perturbations excited by wall roughness and unsteady
disturbances induced by free-stream vorticity is also investigated. The results indicate
that the stationary and travelling modes can efficiently force a wave with the frequency
of the external vortical disturbance and a spanwise wavenumber given by the sum
of those of the generating modes. If the two interacting modes are both unstable,
they continuously force an unsteady wave amplifying at a rate equal to the sum
of the growth rates of the interacting parent modes. On the other hand, modal
travelling crossflow instability is observed when the vortical free-stream mode cannot
directly trigger an unsteady growing disturbance, showing also that a receptivity
mechanism related to the scattering of free-stream modes on the roughness surface
is available. However, the receptivity coefficients related to this receptivity process
are much smaller than for the mechanism in the absence of roughness. Travelling
crossflow instability is therefore triggered via direct receptivity to free-stream vorticity
in low-noise environments.

The relative importance of the two direct receptivity mechanisms is estimated
by considering a roughness height of the order of 2.5 % of the boundary-layer
displacement thickness. It is found that steady crossflow instability will dominate in
the boundary layer, unless the free-stream disturbances have amplitudes of about
� 0.5 % of the free-stream velocity. Note that the latter estimate can be considered
conservative for the travelling modes since it is based only on the initial growth of
the unstable waves.

The receptivity mechanisms due to coupling of free-stream modes at roughness
presented in this work may become important at high levels of free-stream turbulence.
In this case, we should also consider the nonlinear interaction among free-stream
modes. This type of interaction is found to be the dominant mechanism in the case
of streaks forced in the Blasius boundary layer by free-stream turbulence intensities
larger than 3.5 % (see Brandt et al. 2004). In three-dimensional boundary layers,
we can expect an even larger relevance of these nonlinear effects; in this case,
the interaction between two exponentially growing modes may continuously induce
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waves with large amplification and quickly create a disturbed boundary-layer flow.
To analyse this scenario better, full nonlinear simulations are the most suitable tool,
and future work is planned in this direction.
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